Julia enables package developers and users to document functions, types and other objects easily via a built-in documentation system since Julia 0.4.

The basic syntax is simple: any string appearing at the top-level right before an object (function, macro, type or instance) will be interpreted as documenting it (these are called docstrings). Note that no blank lines or comments may intervene between a docstring and the documented object. Here is a basic example:

"Tell whether there are too foo items in the array."
foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code examples from text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default, but one can construct other string macros and pass them to the @doc macro just as well.

Here is a more complex example, still using Markdown:

    bar(x[, y])

Compute the Bar index between `x` and `y`. If `y` is missing, compute
the Bar index between all pairs of columns of `x`.

# Examples
julia> bar([1, 2], [1, 2])
function bar(x, y) ...

As in the example above, we recommend following some simple conventions when writing documentation:

  1. Always show the signature of a function at the top of the documentation, with a four-space indent so that it is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x::AbstractArray)), or a simplified form. Optional arguments should be represented with their default values (i.e. f(x, y=1)) when possible, following the actual Julia syntax. Optional arguments which do not have a default value should be put in brackets (i.e. f(x[, y]) and f(x[, y[, z]])). An alternative solution is to use several lines: one without optional arguments, the other(s) with them. This solution can also be used to document several related methods of a given function. When a function accepts many keyword arguments, only include a <keyword arguments> placeholder in the signature (i.e. f(x; <keyword arguments>)), and give the complete list under an # Arguments section (see point 4 below).

  1. Include a single one-line sentence describing what the function does or what the object represents after the simplified signature block. If needed, provide more details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form ("Do this", "Return that") instead of the third person (do not write "Returns the length...") when documenting functions. It should end with a period. If the meaning of a function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this should not be taken as an absolute requirement for every single case though).

  1. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with "The function bar...": go straight to the point. Similarly, if the signature specifies the types of the arguments, mentioning them in the description is redundant.

  1. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the function's purpose. An argument list would only repeat information already provided elsewhere. However, providing an argument list can be a good idea for complex functions with many arguments (in particular keyword arguments). In that case, insert it after the general description of the function, under an # Arguments header, with one - bullet for each argument. The list should mention the types and default values (if any) of the arguments:

   # Arguments
   - `n::Integer`: the number of elements to compute.
   - `dim::Integer=1`: the dimensions along which to perform the computation.
5. Provide hints to related functions.

   Sometimes there are functions of related functionality. To increase discoverability please provide
   a short list of these in a `See also:` paragraph.

   See also: [`bar!`](@ref), [`baz`](@ref), [`baaz`](@ref)
6. Include any code examples in an `# Examples` section.

   Examples should, whenever possible, be written as *doctests*. A *doctest* is a fenced code block
   (see [Code blocks](@ref)) starting with ````` ```jldoctest````` and contains any number of `julia>`
   prompts together with inputs and expected outputs that mimic the Julia REPL.

   For example in the following docstring a variable `a` is defined and the expected result, as printed
   in a Julia REPL, appears afterwards:

   Some nice documentation here.

   # Examples
   julia> a = [1 2; 3 4]
   2×2 Array{Int64,2}:
    1  2
    3  4

   !!! warning
       Calling `rand` and other RNG-related functions should be avoided in doctests since they will not
       produce consistent outputs during different Julia sessions. If you would like to show some random
       number generation related functionality, one option is to explicitly construct and seed your own
       [`MersenneTwister`](@ref) (or other pseudorandom number generator) and pass it to the functions you are

       Operating system word size ([`Int32`](@ref) or [`Int64`](@ref)) as well as path separator differences
       (`/` or `\`) will also affect the reproducibility of some doctests.

       Note that whitespace in your doctest is significant! The doctest will fail if you misalign the
       output of pretty-printing an array, for example.

   You can then run `make -C doc doctest=true` to run all the doctests in the Julia Manual and API
   documentation, which will ensure that your example works.

   To indicate that the output result is truncated, you may write
   `[...]` at the line where checking should stop. This is useful to
   hide a stacktrace (which contains non-permanent references to lines
   of julia code) when the doctest shows that an exception is thrown,
   for example:

   julia> div(1, 0)
   ERROR: DivideError: integer division error

   Examples that are untestable should be written within fenced code blocks starting with ````` ```julia`````
   so that they are highlighted correctly in the generated documentation.

   !!! tip
       Wherever possible examples should be **self-contained** and **runnable** so that readers are able
       to try them out without having to include any dependencies.
7. Use backticks to identify code and equations.

   Julia identifiers and code excerpts should always appear between backticks ``` ` ``` to enable
   highlighting. Equations in the LaTeX syntax can be inserted between double backticks ``` `` ```.
   Use Unicode characters rather than their LaTeX escape sequence, i.e. ``` ``α = 1`` ``` rather
   than ``` ``\\alpha = 1`` ```.
8. Place the starting and ending `"""` characters on lines by themselves.

   That is, write:


   f(x, y) = ...

   rather than:


   f(x, y) = ...

   This makes it more clear where docstrings start and end.
9. Respect the line length limit used in the surrounding code.

   Docstrings are edited using the same tools as code. Therefore, the same conventions should apply.
   It it advised to add line breaks after 92 characters.
6. Provide information allowing custom types to implement the function in an
   `# Implementation` section. These implementation details intended for developers
   rather than users, explaining e.g. which functions should be overridden and which functions
   automatically use appropriate fallbacks, are better kept separate from the main description of
   the function's behavior.

## Accessing Documentation

Documentation can be accessed at the REPL or in [IJulia](
by typing `?` followed by the name of a function or macro, and pressing `Enter`. For example,

julia ?cos ?@time ?r""

will bring up docs for the relevant function, macro or string macro respectively. In [Juno](
using `Ctrl-J, Ctrl-D` will bring up documentation for the object under the cursor.

## Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice
for generic functions to have a single purpose, Julia allows methods to be documented individually
if necessary. In general, only the most generic method should be documented, or even the function
itself (i.e. the object created without any methods by `function bar end`). Specific methods should
only be documented if their behaviour differs from the more generic ones. In any case, they should
not repeat the information provided elsewhere. For example:

julia """ *(x, y, z...)

Multiplication operator. x * y * z *... calls this function with multiple arguments, i.e. *(x, y, z...). """ function *(x, y, z...) # ... [implementation sold separately] ... end

""" *(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them. """ function *(x::AbstractString, y::AbstractString, z::AbstractString...) # ... [insert secret sauce here] ... end

help?> * search: * .*

*(x, y, z...)

Multiplication operator. x * y * z *... calls this function with multiple arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

When retrieving documentation for a generic function, the metadata for each method is concatenated
with the `catdoc` function, which can of course be overridden for custom types.

## Advanced Usage

The `@doc` macro associates its first argument with its second in a per-module dictionary called
`META`. By default, documentation is expected to be written in Markdown, and the `doc""` string
macro simply creates an object representing the Markdown content. In the future it is likely to
do more advanced things such as allowing for relative image or link paths.

To make it easier to write documentation, the parser treats the macro name `@doc` specially:
if a call to `@doc` has one argument, but another expression appears after a single line
break, then that additional expression is added as an argument to the macro.
Therefore the following syntax is parsed as a 2-argument call to `@doc`:

julia @doc raw""" ... """ f(x) = x

This makes it easy to use an arbitrary object (here a `raw` string) as a docstring.

When used for retrieving documentation, the `@doc` macro (or equally, the `doc` function) will
search all `META` dictionaries for metadata relevant to the given object and return it. The returned
object (some Markdown content, for example) will by default display itself intelligently. This
design also makes it easy to use the doc system in a programmatic way; for example, to re-use
documentation between different versions of a function:

julia @doc "..." foo! @doc (@doc foo!) foo

Or for use with Julia's metaprogramming functionality:

julia for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/)) @eval begin f(a,b) = op(a,b) end end @doc "add(a,b) adds a and b together" add @doc "subtract(a,b) subtracts b from a" subtract

Documentation written in non-toplevel blocks, such as `begin`, `if`, `for`, and `let`, is
added to the documentation system as blocks are evaluated. For example:

julia if condition() "..." f(x) = x end

will add documentation to `f(x)` when `condition()` is `true`. Note that even if `f(x)` goes
out of scope at the end of the block, its documentation will remain.

### Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that
instance, rather than just on the type itself. In these cases, you can add a method to `Docs.getdoc`
for your custom type that returns the documentation on a per-instance basis. For instance,

julia struct MyType value::String end

Docs.getdoc(t::MyType) = "Documentation for MyType with value t.value"

x = MyType("x") y = MyType("y")

`?x` will display "Documentation for MyType with value x" while `?y` will display
"Documentation for MyType with value y".

## Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples `"..."` is used to illustrate an arbitrary docstring.

`doc""` should only be used when the docstring contains `$` or `\` characters that should not
be parsed by Julia such as LaTeX syntax or Julia source code examples containing interpolation.

### Functions and Methods

julia "..." function f end

"..." f

Adds docstring `"..."` to the function `f`. The first version is the preferred syntax, however both
are equivalent.

julia "..." f(x) = x

"..." function f(x) x end

"..." f(x)

Adds docstring `"..."` to the method `f(::Any)`.

julia "..." f(x, y = 1) = x + y

Adds docstring `"..."` to two `Method`s, namely `f(::Any)` and `f(::Any, ::Any)`.

### Macros

julia "..." macro m(x) end

Adds docstring `"..."` to the `@m(::Any)` macro definition.

julia "..." :(@m)

Adds docstring `"..."` to the macro named `@m`.

### Types

"..." abstract type T1 end

"..." mutable struct T2 ... end

"..." struct T3 ... end

Adds the docstring `"..."` to types `T1`, `T2`, and `T3`.

julia "..." struct T "x" x "y" y end

Adds docstring `"..."` to type `T`, `"x"` to field `T.x` and `"y"` to field `T.y`. Also applicable
to `mutable struct` types.

### Modules

julia "..." module M end

module M

"..." M


Adds docstring `"..."` to the `Module``M`. Adding the docstring above the `Module` is the preferred
syntax, however both are equivalent.

julia "..." baremodule M



baremodule M

import Base: @doc

"..." f(x) = x


Documenting a `baremodule` by placing a docstring above the expression automatically imports
`@doc` into the module. These imports must be done manually when the module expression is not
documented. Empty `baremodule`s cannot be documented.

### Global Variables

julia "..." const a = 1

"..." b = 2

"..." global c = 3

Adds docstring `"..."` to the `Binding`s `a`, `b`, and `c`.

`Binding`s are used to store a reference to a particular `Symbol` in a `Module` without storing
the referenced value itself.

!!! note
    When a `const` definition is only used to define an alias of another definition, such as is the
    case with the function `div` and its alias `÷` in `Base`, do not document the alias and instead
    document the actual function.

    If the alias is documented and not the real definition then the docsystem (`?` mode) will not
    return the docstring attached to the alias when the real definition is searched for.

    For example you should write

    f(x) = x + 1
    const alias = f

    rather than

    f(x) = x + 1
    const alias = f

julia "..." sym

Adds docstring `"..."` to the value associated with `sym`. Users should prefer documenting `sym`
at its definition.

### Multiple Objects

julia "..." a, b

Adds docstring `"..."` to `a` and `b` each of which should be a documentable expression. This
syntax is equivalent to

julia "..." a

"..." b

Any number of expressions many be documented together in this way. This syntax can be useful when
two functions are related, such as non-mutating and mutating versions `f` and `f!`.

### Macro-generated code

julia "..." @m expression

Adds docstring `"..."` to expression generated by expanding `@m expression`. This allows for expressions
decorated with `@inline`, `@noinline`, `@generated`, or any other macro to be documented in the
same way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically
support docstrings. If a macro returns a block containing multiple subexpressions then the subexpression
that should be documented must be marked using the [`@__doc__`](@ref Core.@__doc__) macro.

The `@enum` macro makes use of `@__doc__` to allow for documenting `Enum`s. Examining its definition
should serve as an example of how to use `@__doc__` correctly.

@docs Core.@doc

## Markdown syntax

The following markdown syntax is supported in Julia.

### Inline elements

Here "inline" refers to elements that can be found within blocks of text, i.e. paragraphs. These
include the following elements.

#### Bold

Surround words with two asterisks, `**`, to display the enclosed text in boldface.

A paragraph containing a bold word.

#### Italics

Surround words with one asterisk, `*`, to display the enclosed text in italics.

A paragraph containing an emphasised word.

#### Literals

Surround text that should be displayed exactly as written with single backticks, ``` ` ``` .

A paragraph containing a literal word.

Literals should be used when writing text that refers to names of variables, functions, or other
parts of a Julia program.

!!! tip
    To include a backtick character within literal text use three backticks rather than one to enclose
    the text.

    A paragraph containing a ``` `backtick` character ```.

    By extension any odd number of backticks may be used to enclose a lesser number of backticks.

#### ``\LaTeX``

Surround text that should be displayed as mathematics using ``\LaTeX`` syntax with double backticks,

$$` .

A paragraph containing some ``\LaTeX`` markup.

As with literals in the previous section, if literal backticks need to be written within double backticks use an even number greater than two. Note that if a single literal backtick needs to be included within $\LaTeX$ markup then two enclosing backticks is sufficient.


Links to either external or internal addresses can be written using the following syntax, where the text enclosed in square brackets, [ ], is the name of the link and the text enclosed in parentheses, ( ), is the URL.

A paragraph containing a link to [Julia](

It's also possible to add cross-references to other documented functions/methods/variables within the Julia documentation itself. For example:

    accumulate!(op, y, x)

Cumulative operation `op` on a vector `x`, storing the result in `y`. See also [`accumulate`](@ref).

This will create a link in the generated docs to the accumulate documentation (which has more information about what this function actually does). It's good to include cross references to mutating/non-mutating versions of a function, or to highlight a difference between two similar-seeming functions.


The above cross referencing is not a Markdown feature, and relies on Documenter.jl, which is used to build base Julia's documentation.

Footnote references

Named and numbered footnote references can be written using the following syntax. A footnote name must be a single alphanumeric word containing no punctuation.

A paragraph containing a numbered footnote [^1] and a named one [^named].

The text associated with a footnote can be written anywhere within the same page as the footnote reference. The syntax used to define the footnote text is discussed in the Footnotes section below.

Toplevel elements

The following elements can be written either at the "toplevel" of a document or within another "toplevel" element.


A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline elements section above, with one or more blank lines above and below it.

This is a paragraph.

And this is *another* one containing some emphasised text.
A new line, but still part of the same paragraph.


A document can be split up into different sections using headers. Headers use the following syntax:

# Level One
## Level Two
### Level Three
#### Level Four
##### Level Five
###### Level Six

A header line can contain any inline syntax in the same way as a paragraph can.


Try to avoid using too many levels of header within a single document. A heavily nested document may be indicative of a need to restructure it or split it into several pages covering separate topics.

Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the following example.

This is a paragraph.

    function func(x)
        # ...

Another paragraph.

Additionally, code blocks can be enclosed using triple backticks with an optional "language" to specify how a block of code should be highlighted.

A code block without a "language":

function func(x)
    # ...

and another one with the "language" specified as `julia`:

function func(x)
    # ...

"Fenced" code blocks, as shown in the last example, should be preferred over indented code blocks since there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using > characters prepended to each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for
> technical computing, with syntax that is familiar to users of other
> technical computing environments.

Note that a single space must appear after the > character on each line. Quoted blocks may themselves contain other toplevel or inline elements.


The syntax for images is similar to the link syntax mentioned above. Prepending a ! character to a link will display an image from the specified URL rather than a link to it.

![alternative text](link/to/image.png)


Unordered lists can be written by prepending each item in a list with either *, +, or -.

A list of items:

  * item one
  * item two
  * item three

Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line should be left between each list item when including any toplevel elements within a list.

Another list:

  * item one

  * item two

    f(x) = x

  * And a sublist:

      + sub-item one
      + sub-item two

The contents of each item in the list must line up with the first line of the item. In the above example the fenced code block must be indented by four spaces to align with the i in item two.

Ordered lists are written by replacing the "bullet" character, either *, +, or -, with a positive integer followed by either . or ).

Two ordered lists:

 1. item one
 2. item two
 3. item three

 5) item five
 6) item six
 7) item seven

An ordered list may start from a number other than one, as in the second list of the above example, where it is numbered from five. As with unordered lists, ordered lists can contain nested toplevel elements.

Display equations

Large $\LaTeX$ equations that do not fit inline within a paragraph may be written as display equations using a fenced code block with the "language" math as in the example below.

f(a) = \frac{1}{2\pi}\int_{0}^{2\pi} (\alpha+R\cos(\theta))d\theta


This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax, aside from the : character that is appended to the footnote label.

[^1]: Numbered footnote text.


    Named footnote text containing several toplevel elements.

      * item one
      * item two
      * item three

    function func(x)
        # ...

No checks are done during parsing to make sure that all footnote references have matching footnotes.

Horizontal rules

The equivalent of an <hr> HTML tag can be written using the following syntax:

Text above the line.


And text below the line.


Basic tables can be written using the syntax described below. Note that markdown tables have limited features and cannot contain nested toplevel elements unlike other elements discussed above – only inline elements are allowed. Tables must always contain a header row with column names. Cells cannot span multiple rows or columns of the table.

| Column One | Column Two | Column Three |
|:---------- | ---------- |:------------:|
| Row `1`    | Column `2` |              |
| *Row* 2    | **Row** 2  | Column ``3`` |

As illustrated in the above example each column of | characters must be aligned vertically.

A : character on either end of a column's header separator (the row containing - characters) specifies whether the row is left-aligned, right-aligned, or (when : appears on both ends) center-aligned. Providing no : characters will default to right-aligning the column.


Specially formatted blocks, known as admonitions, can be used to highlight particular remarks. They can be defined using the following !!! syntax:

!!! note

    This is the content of the note.

!!! warning "Beware!"

    And this is another one.

    This warning admonition has a custom title: `"Beware!"`.

The type of the admonition can be any word, but some types produce special styling, namely (in order of decreasing severity): danger, warning, info/note, and tip.

A custom title for the box can be provided as a string (in double quotes) after the admonition type. If no title text is specified after the admonition type, then the title used will be the type of the block, i.e. "Note" in the case of the note admonition.

Admonitions, like most other toplevel elements, can contain other toplevel elements.

Markdown Syntax Extensions

Julia's markdown supports interpolation in a very similar way to basic string literals, with the difference that it will store the object itself in the Markdown tree (as opposed to converting it to a string). When the Markdown content is rendered the usual show methods will be called, and these can be overridden as usual. This design allows the Markdown to be extended with arbitrarily complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom flavour of Markdown can be used, but this should generally be unnecessary.